We are the micropile contractor that can use different types of micropule to perform, including driven micropile, compaction micropile, jet grout micropile, post grouted micropile, pressure grouted micropile, drilled end bearning micropile and hollow bar micropile. 
Self-drilling Anchor (SDA) was introduced for temporary tunnel surface stabilization and long- term reinforcement around the excavation surface area.

Ground improvement techniques for soil stabilization
Ground improvement and ground modification refer to the improvement in or modification to the engineering properties of soil that are carried out at a site where the soil in its natural state does not possess properties that are adequate to withstand the load of the structure.  The improvement may be accomplished by drainage, compaction, preloading, reinforcement, and grouting, electrical, chemical or thermal methods. Among the various soil stabilization procedures, the most suitable one is selected depending upon the type of soil available, time, cost involved etc.
Given below are some ground improvements techniques adopted.

Vibro compaction
Vibro Compaction is an established ground improvement method for stabilising granular soils such as loose sands, gravels and some hydraulic fills. The technique is primarily used for seismic mitigation and in-situ densification of loose sands up to 30m deep.The water jetting and horizontal vibratory action of the vibroflot acts to compact the loose soils into a denser condition and significantly improve the bearing capacity of the treated ground. The vibro compaction technique is well established for use in tank farm, port and marine structure projects.
Vibro Compaction significantly reduces the threat of liquefaction in the event of earthquakes; densifying sands to provide a firm founding layer It is extremely effective for sand compaction and land reclamation projects. Vibro Compaction provides fast, in-situ densification of loose sands to depths of up to 30 metres and is one of the most economical and sustainable ground improvement methods available, with no spoil generated and no fill material required.

Vacuum consolidation is a soft soil improve,ment method that has been successfully used by geotechnical engineers and specialists of ground improvement companies. It does not necessarily require surcharge fill and vacuum loads of 80kPa or greater can, typically, be maintained for as long as required. However, if loads of 80kPa or greater are needed in order to achieve the target soil improvement, additional surcharge may be placed on top of the vacuum system. The vacuum preloading method is cheaper and faster than the fill surcharge method for an equivalent load in suitable areas. Where the underlying ground consists of permeable materials, such as sand or sandy clay, the cost of the technique will be significantly increased due to the requirement of cut-off walls into non-permeable layers to seal off the vacuum.
Various vacuum consolidation systems are developed for a number of applications. As the primary application of the vacuum consolidation method is consolidation and stabilization of soft clayey ground. When the vacuum consolidation method is extended to other applications with different working conditions and different treated materials, the systems require specific features and/or special designed construction machines. Moreover, vacuum consolidation applied in on-land and under-water conditions are principally different in equivalent load as the vacuum is applied on ground surface or under water table, relatively.
Soil Preloading
Depending on how a preload is applied, the preloading methods can be subdivided into preloading using fill, preloading using vacuum pressure and combined fill, and vacuum preloading methods. In addition to preloading, PVDs have also been used for some other relatively new methods such as dynamic consolidation for clays. In both cases, the main purpose of using PVDs is to reduce the drainage path so that the time taken for the consolidation of soft soil or the dissipation of excess pore-water pressure can be substantially reduced.
According to the soil classification system adopted by TC211 (Chu et al., 2009c), soil improvement through consolidation or preloading belongs to the category of ‘ground improvement without admixtures in cohesive soils’. This category is further divided into the following seven subcategories-

  • replacement/displacement (including load reduction using lightweight materials)
  • preloading using fill (including the use of vertical drains)
  • preloading using vacuum (including combined fill and vacuum)
  • dynamic consolidation with enhanced drainage (including the use of vacuum)
  • electro-osmosis or electro-kinetic consolidation
  • thermal stabilisation using heating or freezing
  • Hydro-blasting compaction.

Soil vitrification
Soil Vitrification technique  uses heat to melt and then solidify harmful chemicals in a solid mass of glasslike material. It can be applied both in-situ (in-situ vitrification or ISV) and above ground in a treatment unit (ex-situ).
ISV uses space and an electrical current is passed between them, melting the soil between them. ISV uses very high temperatures (1,600 to 2,000 °C or a pair of, 900 to 3,650 °F). Melting starts close to the bottom surface and moves down. Because the soil melts, the electrodes sink additional into the bottom inflicting deeper soil to soften. Once the facility is turned off, the unfrozen soil cools and vitrifies, which implies it turns into a solid block of glass-like material. The electrodes become a part of the block. This causes the bottom exterior within the space to sink slightly. To level it, the sunken space is full of clean soil.
Ex-situ vitrification is far like ISV, except that it’s done within a compartment. Heating devices embody plasma torches and electrical transference furnaces. With plasma torch technology, waste is fed into a rotating hearth; the waste and melted material square measure control aligned with the aspect by force. Throughout the rotation, the waste moves through plasma generated by a standstill torch. To get rid of the melted material from the chamber, the earth’s rotation slows and also the dross flows through an underneath gap. Effluent gases square measure usually unbroken in an exceedingly separate instrumentation wherever high temperatures combust/oxidize the contents.

Ground freezing
Ground freezing is a construction technique used in circumstances where soil needs to be stabilized so it will not collapse next to excavations, or to prevent contaminants spilled into soil from being leached away.Ground freezing has been used for at least one hundred years.  Ground freezing is also used to provide regional groundwater barriers around mining operations for gold and other minerals, oil sands or oil shales. It is often referred to as ground freezing, soil freezing, or freeze wall. The ground freezing process involves drilling and installing a series of relatively closely spaced pipes and circulating a coolant through these pipes. The refrigerated coolant extracts heat from the ground, converting the soil pore water to ice resulting in an extremely strong, impermeable material. It is the most positive method of ground improvement used in the underground construction and mining industries.
Deep shafts are the most common application of ground freezing. The freeze pipes are drilled and installed around the perimeter of the proposed shaft to do the required depth. The circulation of the coolant is initiated until a frozen zone ranging from 1 to ten meters is formed. The inside of the shaft is then excavated and lined and the freezing system turned off. Ground freezing is used extensively in the tunneling industry. Tunnel applications use several different approaches. The most common involves horizontally drilling the freeze pipes around the tunnel perimeter very similar to the frozen shaft approach.

Vibro stone columns
Vibro stone columns or aggregate piers are an array of crushed stone pillars placed with a vibrating tool into the soil below a proposed structure. This method of ground improvement is also called vibro replacement. Such techniques increase the load bearing capacity and drainage of the soil while reducing settlement and liquefaction potential. Stone columns are made across the area to be improved in a triangular or rectangular grid pattern.
Column depth depends on local soil strata, and usually penetrates weak soil. During construction, a vibrating tool suspended from a crane penetrates to the design depth by means of its own weight and vibrations. Predrilling may be required in dense soil or may be used to reduce the amount of ground displacement during installation. Crushed stone is introduced into the hole by one of two methods. In the dry bottom method, a pipe attached to the vibrator supplies stone directly to it. In the wet top method, water jets located in the vibrator’s tip create an annular space around the vibrator through which stone is introduced from the top.

Mechanically stabilized earth (MSE)
Mechanically stabilized earth (MSE or reinforced soil) is soil constructed with artificial reinforcing. It can be used for retaining walls, bridge abutments, seawalls, and dikes.[ Although the basic principles of MSE have been used throughout history.
MSE walls stabilize unstable slopes and retain the soil on steep slopes and under crest loads. The wall face is often of precast, segmental blocks, panels or geocells that can tolerate some differential movement. The walls are infilled with granular soil, with or without reinforcement, while retaining the backfill soil. Reinforced walls utilize horizontal layers typically of geogrids. The reinforced soil mass, along with the facing, forms the wall. In many types of MSE’s, each vertical fascia row is inset, thereby providing individual cells that can be infilled with topsoil and planted with vegetation to create a green wall. The main advantages of MSE walls compared to conventional reinforced concrete walls are their ease of installation and quick construction. They do not require formwork or curing and each layer is structurally sound as it is laid, reducing the need for support, scaffolding or cranes. They also do not require additional work on the facing.
In a typical MSE wall, compacted granular soil is reinforced by horizontal layers of steel strips or geosynthetic materials. The use of reinforced elements significantly increases the strength of the system. Facing elements are relatively thin components, usually made out of precast concrete, welded wire mesh panels or shotcrete. Their structural objective is to hold the soil between the reinforcement layers. A facing system enables the construction of a steep or even a vertical MSE wall. Soil material is also placed without a reinforcement between the stabilized zone and the natural surface of the ground. This zone is known as retained backfill. A complete MSE wall is a gravity-based structure. It relies on its mass to bear the applied forces including lateral earth pressures, water pressures, seismic loads or loads related to human activity.

Soil nailing
Soil nailing is a ground stabilisation technique that can be used on either natural or excavated slopes. It involves drilling holes for steel bars to be inserted into a slope face which are then grouted in place. Mesh is attached to the bar ends to hold the slope face in position. They are commonly used as a remedial measure to stabilise embankment
Soil nailing uses grouted, tension-resisting steel elements (nails) to reinforce in situ soils and creates a gravity retaining wall for permanent or temporary excavation support.Soil nail walls are generally constructed from the top down. Typically, soil is excavated in three to six feet deep stages. After each excavation stage, near-horizontal holes are drilled into the exposed face at typically three to six foot centres. Tension-resisting steel bars are inserted into the holes and grouted in place. A drainage system is installed on the exposed face, followed by the application of reinforced shotcrete wall facing. Precast face panels can also be used. Bearing plates are then fixed to the heads of the soil nails. This installation process is repeated until the design wall depth is reached. The finished soil nails then produce a zone of reinforced ground.

Micropiles are high-performance, high-capacity drilled deep foundation elements  typically between 5–12 inches in diameter that can extend to depths of 200 feet and achieve working loads of over 200 tons. Micropiles are composed of high-strength steel casing, rebar and grout.
Micropiles are small diameter drilled and  grouted friction piles. Each pile includes steel elements that are bonded into  the bearing soil or rock – usually with cement grout. The bearing stratum is  logged during installation drilling to assure that bearing capacity is  adequate. Micropiles do not rely on end-bearing capacity, so there is no need  to establish the competency of rock beyond bond-depth. They can be installed  quickly in virtually every type of ground using highly adaptable mobile  drilling equipment.Micropiles can be used in a variety of foundation projects. They are particularly useful when projects are in areas with limited access or weak soil. They have become a preferred method of deep-foundation stabilization thanks to their reliability, versatility, and efficiency.

Grouting is quite a well-known technique in the field of civil engineering, especially in foundation engineering. Grouting is effective in both sand and silt deposits. Grouts are liquid suspensions or solutions that are injected into the soil mass to improve its behaviour. Such liquids can permeate into the void space of the soil and bind the soil particles together. The primary purpose of grouting is to fill the voids of the formation material by replacing the existing fluids with the grout and thereby improving the engineering properties of the medium, especially reducing the permeability. The selection of proper grouting materials depends upon the type of granular medium and the purpose of grouting. Cement, Bentonite, clay and lime are the grouting materials normally used for grouting a granular medium. In the present paper, sand was used as the grouting medium and cement was used as the grouting materials.
Grouting is effective in both sand and silt deposits. Grouts are liquid suspensions or solutions that are injected into the soil mass to improve its behavior. Such liquids can permeate into the void space of the soil and bind the soil particles together. The primary purpose of grouting is to fill the voids of the formation material by replacing the existing fluids with the grout and thereby improving the engineering properties of the medium, especially reducing the permeability.
These are various methods available for soil improvement techniques which will be used for the needs of accelerating bearing capability, enhancing shear strength and decreasing consolidation settlement of saturated medium clay such as soil replacement, preloading with vertical drains, stone columns, stabilization with additives and thermal ways.

Location: Kuala Lumpur: Bukit Bintang, Titiwangsa, Setiawangsa, Wangsa Maju, Batu, Kepong, Segambut, Lembah Pantai, Bandar Tun Razak, Cheras, Ampang, Batu Caves, Damansara, Sentul, Sungai Besi Selangor: Gombak, Hulu Langat, Hulu Selangor, Klang, Kuala Langat, Kuala Selangor, Petaling, Sabak Bernam, Sepang, Shah Alam, Ampang Jaya, Kajang, Bangi, Kota Damansara, Petaling Jaya, Putrajaya, Cyberjaya, Bandar Saujana Putra, Selayang, Subang Jaya, Puchong, Kota Damansara, Sungai Long, Gombak District • Hulu Langat District • Hulu Selangor District • Klang District • Kuala Langat District • Kuala Selangor District • Petaling District • Sabak Bernam District • Sepang District • Petaling Jaya • Shah Alam • Ampang • Assam Jawa • Bagan Lalang • Balakong • Bangi • Banting • Batang Kali • Batu Arang • Batu Caves • Beranang • Bestari Jaya • Broga • Bukit Lanjan • Bukit Raja • Bukit Rotan • Bukit Tagar • Cheras • Cyberjaya • Damansara • Dengkil • Ijok • Jenjarom • Jeram • Jugra • Kajang • Kalumpang • Kapar • Kerling • Klang • Kuala Kubu Bharu • Kuala Selangor • Kuala Sungai Buloh • Kuang • Kundang • Lagong • Meru • Morib • Padang Jawa • Pandamaran • Paya Jaras • Port Klang • Puchong • Rasa • Rawang • Sabak • Salak Tinggi • Sekinchan • Selayang • Semenyih • Sepang • Serendah • Seri Kembangan • Sijangkang • Subang • Sungai Ayer Tawar • Sungai Besar • Sungai Buaya • Sungai Buloh • Sungai Choh • Sungai Pelek • Sungai Pelong • Tanjung Harapan • Tanjung Karang • Tanjung Sepat • Teluk Datok • Teluk Gong • Teluk Panglima Garang • Ulu Klang • Ulu Yam • Alam Budiman • Alam Impian • Ara Damansara • Bandar Baru Bangi • Bandar Baru Klang • Bandar Baru Selayang • Botanic • Bukit Tinggi • Country Homes • Kinrara • Mahkota Cheras • Saujana Putra • Seri Putra • Sri Damansara • Bandar Sultan Suleiman • Sungai Buaya • Sungai Long • Sunway • Tasik Puteri • Bandar Tun Hussein Onn • Bandar Utama • Bernam Jaya • Bukit Antarabangsa • Bukit Beruntung • Bukit Jelutong • Bukit Rahman Putra • Bukit Rimau • Bukit Subang • Country Heights • Damansara Jaya • Damansara Perdana • Damansara Utama • Denai Alam • Eco Grandeur • Elmina • Glenmarie Cove • Hillpark • i-City • Jade Hills • Kelana Jaya • KLIA Charter Field Town • Kota Kemuning • Kota Puteri • Lembah Beringin • Lembah Jaya • Mutiara Damansara • Pandan Indah • Pandan Jaya • Puncak Alam • Puncak Perdana • Putra Heights • Saujana Impian • Setia Alam • Southville City • Subang Jaya • Berkeley • Taman Cuepacs • Greenwood • Hillview • Keramat • Melawati • Putra Perdana • Sri Andalas • Sri Muda • Taman Tun Teja • TTDI Jaya • UEP Subang Jaya • Valencia • Bagan Nakhoda Omar • Dusun Tua • FELDA Soeharto • Kampung Bukit Lanchong • Kampung Desa Serdang • Kampung Kuantan • Kampung Lombong • Kampung Sungai Haji Dorani • Kampung Sungai Kayu Ara • Kampung Sungai Pusu • Kuala Kubu Bharu (Ampang Pechah) • Kundang • Pulau Meranti • Tanjung Dua Belas • Carey Island • Pulau Indah • Pulau Ketam • Klang Island • Pulau Jemor • Pulau Angsa • MSC Malaysia • Klang Valley Perak: Bagan Datuk, Batang Padang, Hilir Perak, Hulu Perak, Kampar, Kerian, Kinta, Kuala Kangsar, Larut, Matang, Selama, Manjung, Mualim, Perak Tengah, Ipoh, Batu Gajah, Taiping Pahang: Bentong District, Bera District, Cameron Highlands District, Jerantut District, Kuantan District, Lipis District, Maran District, Pekan District, Raub District, Rompin District, Temerloh District, Bandar Bera, Bandar Muadzam Shah, Bandar Tun Abdul Razak, Bandar Tun Razak, Batu Hitam, Batu Talam, Belimbing, Benta, Bentong, Beserah, Brinchang, Bukit Ibam, Bukit Tinggi, Ceruk Paluh, Chendor, Chenor, Cheroh, Fraser's Hill, Gambang, Gebeng, Genting Highlands, Genting Sempah, Jerantut, Karak, Kemayan, Kerdau, Ketari, Kota Iskandar, Kota Shahbandar, Kuala Lipis, Kuala Pahang, Kuala Rompin, Kuala Tahan, Kuala Tembeling, Lanchang, Lentang, Lubuk Paku, Lurah Bilut, Maran, Mengkarak, Mengkuang, Mentakab, Merapoh, Nenasi, Paloh Hinai, Panching, Pekan, Penor, Raub, Sebertak, Sempalit, Sungai Lembing, Sungai Ruan, Tanah Rata, Tanjung Lumpur, Tanjung Sepat, Teluk Cempedak, Temerloh, Teriang, Tringkap Melaka: Alor Gajah Asahan Ayer Keroh Bemban Durian Tunggal Jasin Kem Trendak Kuala Sungai Baru Lubok China Masjid Tanah Melaka Melaka Merlimau Selandar Sungai Rambai Sungai Udang Tanjong Kling Terengganu: Besut District • Dungun District • Hulu Terengganu District • Kemaman District • Kuala Nerus District • Kuala Terengganu District • Marang District • Setiu District • Ajil • Bandar Al-Muktafi Billah Shah • Bandar Ketengah Jaya • Bandar Permaisuri • Bandar Seri Bandi • Batu Rakit • Bukit Besi • Bukit Payong • Chukai • Jabur • Jerangau • Jerteh • Kampung Raja • Kemasik • Kedai Buluh • Kerteh • Kijal • Kuala Besut • Kuala Berang • Kuala Dungun • Kuala Jeneris • Kuala Telemung • Marang • Merchang • Paka • Pasir Raja • Rantau Abang • Rasau Kerteh • Teluk Kalung • Wakaf Tapai • Alam Serada • Rantau Petronas • Jenagur • Kampung Tok Imam Lapar • Padang Midin • Rusila • Seberang Takir • Sekayu • Sungai Bari • Wakaf Mempelam • Bidong • Kapas • Lang Tengah • Perhentian • Redang • Tenggol • Wan Man Kelantan: Bachok District • Gua Musang District o Lojing Autonomous Sub-District • Jeli District • Kota Bharu District • Kuala Krai District • Machang District • Pasir Mas District • Pasir Puteh District • Tanah Merah District • Tumpat District • Bachok • Bukit Bunga • Bunut Payong • Dabong • Gua Musang • Jelawat • Jeli • Ketereh • Kota Bharu • Kuala Krai • Kubang Kerian • Lojing • Machang • Manek Urai • Pasir Mas • Pasir Puteh • Pengkalan Chepa • Pengkalan Kubor • Pengkalan Pasir • Perupok • Rantau Panjang • Salor • Tanah Merah • Temangan • Tok Bali • Tumpat • Wakaf Bharu • Wakaf Che Yeh • Bandar Utama Gua Musang • Bandar Baru Tunjong • Bandar Chintawangsa • Bandar Pasir Puteh Sentral • Bandar Saujana Harmoni • Bandar Satelit Islam Pasir Tumboh • Bandar Tasek Raja Negeri Sembilan: Jelebu • Jempol • Johol • Rembau • Sungai Ujong • Tampin • Jelebu District • Jempol District • Kuala Pilah District • Port Dickson District • Rembau District • Seremban District • Tampin District • Ayer Kuning • Air Kuning Selatan • Ampangan • Bahau • Bandar Seri Jempol • Batang Benar • Batu Kikir • Chembong • Chengkau • Dangi • Gemas • Gemencheh • Johol • Juasseh • Kota • Kuala Klawang • Kuala Pilah • Labu • Lenggeng • Linggi • Lukut • Mantin • Mambau • Nilai • Pajam • Paroi • Pantai • Pasir Panjang • Pedas • Pengkalan Kempas • Pertang • Port Dickson • Rantau • Rasah • Rembau • Rompin • Senawang • Sepang Road • Seremban 2 • Seremban 3 • Seri Menanti • Serting • Sikamat • Siliau • Simpang Durian • Simpang Pertang • Sungai Gadut • Sungai Muntoh • Tampin • Tanjung Ipoh • Teluk Kemang • Tiroi • Bandar Ainsdale • Bandar Baru Nilai • Bandar Enstek • Bandar Springhill • Bandar Sri Sendayan • Rasah Jaya • Seremban Forest Heights • Taman Seremban Jaya • Taman Tuanku Jaafar FELDA L.B. Johnson • Bukit Pelanduk Johor: Ayer Baloi, Ayer Hitam, Ayer Tawar, Bandar Penawar, Bandar Tenggara Batu Anam Batu Pahat Bekok Benut Bukit Gambir Bukit Pasir Chaah Endau Gelang Patah Gerisek Gugusan Taib Andak Jementah Johor Bahru Kahang Kluang Kota Tinggi Kukup Kulai Labis Layang-Layang Masai Mersing Mersing Muar Nusajaya Pagoh Paloh Panchor Parit Jawa Parit Raja Parit Sulong Pasir Gudang Pekan Nenas Pengerang Pontian Pulau Satu Rengam Rengit Segamat Semerah Senai Senggarang Seri Gading Seri Medan Simpang Rengam Sungai Mati Tangkak Ulu Tiram Yong Peng Perlis: Arau Kaki Bukit Kangar Kuala Perlis Padang Besar Simpang Ampat Pulau Pinang: George Town • Penang Island • Seberang Perai • Northeast Penang Island • Southwest Penang Island • North Seberang Perai • Central Seberang Perai • South Seberang Perai • Air Itam • Balik Pulau • Batu Ferringhi • Batu Kawan • Batu Lanchang • Bayan Lepas • Bukit Mertajam • Butterworth • Gelugor • Jelutong • Kepala Batas • Nibong Tebal • Paya Terubong • Perai • Permatang Pauh • Pulau Tikus • Simpang Ampat • Sungai Jawi • Tasek Gelugor • Tanjung Bungah • Tanjung Tokong • Teluk Bahang • Teluk Kumbar • Alma • Ayer Rajah • Bandar Baru Air Itam • Bagan Ajam • Bagan Dalam • Bagan Jermal • Bagan Luar • Bandar Cassia • Bandar Perda • Bandar Tasek Mutiara • Batu Maung • Batu Uban • Bayan Baru • Bukit Jambul • Bukit Minyak • Bukit Tambun • Bukit Tengah • Ceruk Tok Kun • Green Lane • Juru • Kampong Serani • Kampung Siam • Kota Permai • Mak Mandin • Minden Heights • Mount Erskine • Penaga • Penanti • Pinang Tunggal • Relau • Rifle Range • Seberang Jaya • Seri Tanjung Pinang • Sungai Ara • Sungai Dua • Sungai Dua • Sungai Nibong • Sungai Pinang • Taman Free School • Taman Tun Sardon • Teluk Air Tawar • Valdor • Berapit New Village • Gertak Sanggul • Jawi New Village • Kampung Buah Pala • Kampung Selamat • Kampung Seronok • Kubang Semang • Machang Bubok New Village • Mengkuang Titi • Pantai Acheh • Permatang Damar Laut • Permatang Pasir • Permatang Rambai • Permatang Tinggi • Sungai Acheh • Sungai Lembu • Sungai Udang • Teluk Tempoyak • Aman • Betong • Gedung • Jerejak • Kendi • Lovers' • Penang • Rimau • Tikus Kedah: Baling District • Bandar Baharu District • Kota Setar District • Kuala Muda District • Kubang Pasu District • Kulim District • Langkawi District • Padang Terap District • Pendang District • Pokok Sena District • Sik District • Yan District • Alor Tajar • Anak Bukit • Baling • Bedong • Bukit Kayu Hitam • Bukit Pinang • Bukit Selambau • Changlun • Durian Burung • Guar Chempedak • Gurun • Jeniang • Jitra • Kepala Batas • Kodiang • Kota Sarang Semut • Kuah • Kuala Kedah • Kuala Ketil • Kuala Nerang • Kuala Pegang • Kulim • Kupang, Kedah • Langgar • Lunas • Megat Dewa • Merbok • Padang Matsirat • Padang Serai • Pendang • Pokok Sena • Semeling • Serdang • Sik • Siong, Kedah • Sintok • Sungai Lalang • Sungai Limau • Sungai Petani • Sungai Seluang • Tanjung Dawai • Tawar, Baling • Tokai • Yan • Bandar Laguna Merbok • Bandar Puteri Jaya • Bandar Darulaman • Lagenda Height • Bandar Baru Mergong • Tandop Baru • Bandar Amanjaya • Bandar Stargate • Bandar Starcity • Bandar Sejahtera • Bandar Ambangan Sarawak: Betong Division • Micropile Geoprofile Enginnering United Drillers LTY Geotechnics EBS Engineering and Construction Euromatec Holy Engineering Dextra Group Conceal Sdn Bhd Keller Malaysia Group Sanubari Cekal Jack-In Pile BBR Construction Systems G-Pile Sistem Geohan Foundtech Bauer Malaysia Cerucuk Malaysia Megacon Drilling Geodata Engineering Geofrontier Cinlepile Geostrength Engineering KL Geotechnics • Beaufort District • Beluran District • Keningau District • Kinabatangan District • Kota Belud District • Kota Kinabalu District • Kota Marudu District • Kuala Penyu District • Kudat District • Kunak District • Lahad Datu District • Nabawan District • Papar District • Penampang District • Putatan District • Pitas District • Ranau District • Sandakan District • Semporna District • Sipitang District • Tambunan District • Tawau District • Telupid District • Tenom District • Tongod District • Tuaran District • Beaufort • Beluran • Keningau • Kinabatangan • Kota Belud • Kota Marudu • Kuala Penyu • Kudat • Kunak • Lahad Datu Sipitang • Tambunan •What are Micropiles?
Micropiles, commonly referred to as “mini-piles,” are elements constructed using high-quality, durable, small-diameter steel casings or threaded bar. They’re most frequently used when installing a deep foundation. There are many reasons to use this pile type. Here are the most common reasons: To provide structural support To underpin your foundation To transfer loads To enhance mass stability This pile option will help you underpin your foundation, minimize foundation settlement, and are ideal when installing in areas with difficult soil makeup.

How Does the Micropile Installation Process Work? The first thing you need to do is dig a deep hole with a small diameter. Once you’ve cleared the space for the pile, you can lower that into the hole and apply torque to secure the pile. Then you fill the hole with a concrete grout mixture to keep everything in place. After you let the structure settle, you can apply a support system to the top of the pile. This will distribute weight evenly and guarantee good contact with the supported foundation.

What are the Benefits of Micropile?
​This pile option is one of the most practical and cost-effective solutions. It offers easy installation with its compact, lightweight nature, and is great for confined or remote areas like steep slopes, basements, overpasses, and even river pier foundations and wetlands. It also can be installed at various angles and is capable of resisting axial and lateral loads. This option is ideal for rocky areas because they can be secured within the rock, and actually draw load bearing capabilities from it. It’s also more easily installed in congested areas, and since it’s installed vertically, it can be used for tight spaces that machines can’t get to. It’s great for situations when you actually need to repair your foundation. But its main benefit is that it’s durable and cost-effective and take far less time to install than other pile options.Foundations provide support for structures, transferring their load to layers of soil or rock that have sufficient bearing capacity and suitable settlement characteristics. Very broadly, foundations can be categorised as shallow foundations or deep foundations. Pile foundations are deep foundations. They are formed by long, slender, columnar elements typically made from steel or reinforced concrete or sometimes timber. A foundation is described as piled when its depth is more than three times its breadth. Micropiles are piles that have a relatively small diameter, typically in the range of 100-250 mm. They can also be described as: Minipiles (generally mini piles are smaller than micro piles) Pin piles. Needle piles. Root piles. Lightweight piles. The size of the pile is determined by the load-bearing capacity of the ground and the size of rig that is able to access the piling location. They can be driven or screw piles and tend to be used where access is restricted, for example underpinning structures affected by settlement. They were first used in Italy in the 1950s in response to the demand for innovative underpinning techniques that could be used for historic buildings and monuments. They are particularly suited to: Shallow bedrock. Boulders and cavities. Immediate hard strata. Where underpinning is required, such as for foundations adjacent to planned excavations. Micropiles can also be used in combination with other ground modification techniques where complex site conditions and design specifications are present. In a typical installation process a high-strength steel casing is drilled down to the design depth. A reinforcing bar is inserted and high-strength cement grout pumped into the casing. The casing may extend along the full length of the pile, or it may only extend along part of the length of the pile, with the reinforcing bar extending along the full length. Drilling may be achieved by a removable bit, or by a sacrificial head to the steel casing. In some cases, the steel casing may be removed, or partially removed, and further grout pumped in at pressure. They can be installed in restricted access sites where there is low headroom by the use of lagging. This is where wood, steel or precast concrete panels are inserted behind the pile as the excavation proceeds so as to resist the load of the retained soil and transfer it to the pile. Greater capacity can be achieved by post-grouting within the bond length to increase frictional forces with surrounding soils. There are advantages of micropiles include: They are small and relatively light. They are relatively inexpensive. They can be installed through almost any ground condition, making them suitable for installation in environmentally-challenging conditions, such as for wind turbine towers. The limited vibration and noise causes little disturbance. Piling rigs can be low-emission or even electrically driven. They can be installed while avoiding existing utilities, meaning that expensive utility re-routing is not required. They can beinstalled close to existing walls with limited headroom and congested site conditions. They have a high load capacity and an ability to resist compressive, tensile and lateral loads.

Suite 2-7-5, No. 2, 7th Floor, Wisma Manjalara,
Jalan 7A/62A, Bandar Manjalara,
52200 Kuala Lumpur, Malaysia.
+6012-3503682 daniel.chan@geopile.com.my
Switch to Mobile Version